

SAI INSTITUTE OF TECHNOLOGICAL SCIENCE, CHOWDWAR, CUTTACK
DEPARTMENT OF CIVIL ENGINEERING
LESSONPLAN

Discipline:Civil	Semester:3rd	Semesterfrom:01/08/2023-23/11/2023 No.ofweeks:16
Subject: Structural Mechanics Th.1	No.ofdays/per week Class Allotted: 5	Name of the teaching faculty: L.Jena
Week	Class/Day	Theory Topics
1 st	1 st	Basic Principle of Mechanics
	2 nd	Force, Moment, support conditions, Conditions of equilibrium
	3 rd	C.G&MI, Free body diagram
	4 th	Review of CG and MI of different sections
	5 th	Review of CG and MI of different sections
2 nd	1 st	Introduction to stresses and strains
	2 nd	Mechanical properties of materials—Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness,
	3 rd	Ductility, Malleability, Creep, Fatigue, Tenacity, Durability
	4 th	Types of stresses - Tensile, Compressive and Shear stresses
	5 th	Types of strains - Tensile, Compressive and Shear strains
3 rd	1 st	Complementary shear stress - Diagonal tensile / compressive Stresses due to shear
	2 nd	Elongation and Contraction, Longitudinal and Lateral strains
	3 rd	Poisson's Ratio, Volumetric strain, computation of stress, strain
	4 th	change in dimensions and volume etc.
	5 th	Numerical
4 th	1 st	Hooke's law-Elastic Constants
	2 nd	Derivation of relationship between the elastic constants
	3 rd	Application of simple stress and strain in engineering field
	4 th	Behavior of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material
	5 th	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area
5 th	1 st	Significance of percentage elongation and reduction in area of cross section
	2 nd	Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self-weight.
	3 rd	Complex stress and strain
	4 th	Principal stresses and strains: Occurrence of normal and tangential stresses

	5 th	Concept of Principal stress and Principal Planes
6 th	1 st	major and minor principal stresses and their orientations
	2 nd	Mohr's Circle and its application to solve problems of complex stresses
	3 rd	Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions
	4 th	Moment of resistance – Equation for Flexure – Flexural stress distribution
	5 th	Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
7 th	1 st	Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
	2 nd	Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
	3 rd	Concept of torsion, basic assumptions of pure torsion
	4 th	torsion of solid and hollow circular sections, polar moment of inertia
	5 th	torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
8 th	1 st	Combined bending and direct stresses: Combination of stresses, combined direct and bending stresses
	2 nd	Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity
	3 rd	Middle third/fourth rule, Core or Kern for square
	4 th	rectangular and circular sections, chimneys, dams and retaining walls
	5 th	Numerical
9 th	1 st	Columns and Struts, Definition, Short and Long columns
	2 nd	End conditions, Equivalent length / Effective length, Slenderness ratio
	3 rd	Axially loaded short and long column, Euler's theory of long columns
	4 th	Critical load for columns with different end conditions
	5 th	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL)
10 th	1 st	Types of Supports: Simple support, Roller support, Hinged support, Fixed support
	2 nd	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction
	3 rd	Types of Beams based on support conditions
	4 th	Calculation of support reactions using equations of static equilibrium
	5 th	Shear Force and Bending Moment: Signs Convention for S.F. and B.M
11 th	1 st	S.F. and B.M of general cases of determinate beams with

		concentrated loads and udl only
	2 nd	S.F and B.M diagrams for Cantilevers
	3 rd	Simply supported beams and overhanging beams
	4 th	Position of maximum BM, Point of contraflexure
	5 th	Relation between intensity of load, S.F and B.M.
12 th	1 st	Numerical
12 th	2 nd	Introduction: Shape and nature of elastic curve (deflection curve)
12 th	3 rd	Introduction: Shape and nature of elastic curve (deflection curve)
12 th	4 th	Relationship between slope, deflection and curvature (No derivation)
12 th	5 th	Relationship between slope, deflection and curvature (No derivation)
13 th	1 st	Importance of slope and deflection
13 th	2 nd	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)
13 th	3 rd	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)
13 th	4 th	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)
13 th	5 th	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)
14 th	1 st	Indeterminacy in beams
14 th	2 nd	Principle of consistent deformation/compatibility
14 th	3 rd	Analysis of propped cantilever
14 th	4 th	Analysis of propped cantilever
14 th	5 th	Analysis of propped cantilever
15 th	1 st	fixed and two span continuous beams by principle of superposition
15 th	2 nd	SF and BM diagrams (point load and udl covering full span)
15 th	3 rd	SF and BM diagrams (point load and udl covering full span)
15 th	4 th	SF and BM diagrams (point load and udl covering full span)
15 th	5 th	SF and BM diagrams (point load and udl covering full span)
16 th	1 st	Introduction: Types of trusses

	2 nd	statically determinate and indeterminate trusses
	3 rd	statically determinate and indeterminate trusses
	4 th	degree of determinacy
	5 th	stable and unstable trusses. advantages of trusses.

